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Abstract 

For certain classes of rings we give an affirmative answer to whether there exists a uniform 
bound on the least power of the tight closure of an arbitrary ideal which lies in the ideal. The 

rings need to have the property that modulo each minimal prime there exists a resolution of 
singularities obtained by blowing up an ideal. In this case we prove the existence of a ‘strong’ 
test ideal, and then apply this existence to give an affirmative answer to the uniform bound 
question. @ 1997 Elsevier Science B.V. 

AMS Classijkation: 13A35; 13D25 

1. Introduction 

This paper is devoted to answering a question concerning elements in the tight 

closure of ideals and the degrees of the integral equations they satisfy. This question 

grew out of work on the uniform Artin-Rees theorem [8]. Essentially, we ask whether 

there is a uniform bound on the degrees of the integral equations satisfied by elements 

in the tight closure of ideals. Several questions for further study arise naturally from 

this work. The proof of the main result rests on the existence of what we call a ‘strong’ 

test ideal. We will first review the basic definitions and give a precise statement of the 

main problem. Our notation and basic definitions are taken from Matsumura’s classic 

book [lo]. 

The theory of tight closure is developed for any ring containing a field. The definition 

in equicharacteristic 0 is given by reduction to characteristic p. We will be applying 
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tight closure in both equicharacteristic 0 and characteristic p in this paper. We first 

give the definition in positive characteristic. 

Define R” to be the complement of the union of all minimal primes of a ring R. 
The definition of tight closure for ideals in characteristic p is: 

Definition 1.1. Let R be a Noetherian ring of characteristic p > 0. Let I be an ideal 

of R. An element x E R is said to be in the tight closure of I if there exists an element 

c E R” such that for all large q = pe, cxq E I’S], where 1141 is the ideal generated by the 

qth powers of all elements of Z. 

There are several definitions of tight closure in equicharacteristic 0. In this paper we 

will use the equational tight closure. 

Definition 1.2. Let R be a locally excellent ring containing a field of characteristic 

zero. An element z is in the tight closure I* of an ideal I if there exists a finitely 

generated Z-subalgebra Rr of R containing z such that the following holds: for all but 

finitely many closed fibers l?=Rz @Z/pZ of Z --+ Rz, the image Z of z in ri is in the 

(characteristic p) tight closure of the image 1 of I n Rz c RL in IT. 

This type of tight closure is also called Q-tight closure, or the equational tight 

closure; see [3-5, 71. 

We need several facts about tight closure. 

Proposition 1.3. Let R be an equicharacteristic Noetherian ring, and let I be an ideal 

of R. Then 
(1) I* C i, the integral closure of I. 

(2) An element x E R is in I” ifs the image of x in R/P is in the tight closure of 
the image of I in R/P for all minimal primes P of R. 

Proof. For statement (1) in positive characteristic, see [2, (5.2)]. In equicharacteristic 

0, see [5, (4.lm)]. For the proof of (2) in positive characteristic, see [2, (6.25)]. In 

equicharacteristic 0, see [S, (6.3)]. 0 

We recall the definition of the integral closure. 

Definition 1.4. The integral closure of I in a ring R is the set of all elements x E R 
such that x satisfies an equation of the form 

xk + alx k-l+.. . + ak = 0, (1) 

where ai E Z’. The integral closure of I is denoted I‘. 

An alternative definition for integral closure which makes it clear in characteristic p 
as why the tight closure is in the integral closure, is the following: 
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Given an ideal I in a Noetherian ring R, an element x is in the integral closure of 

I if there exists an element c E R“, the complement of the minimal primes of R, such 

that cx” E I” for infinitely many n (equivalently for all n 9 0). 

The least degree of a polynomial as in (1) which shows that x is integral over Z, 

is unbounded if one varies I through all ideals of a Noetherian ring R as long as the 

dimension of R is at least 2. Let (R,m) be a Noetherian local ring of dimension at 

least 2. Let x1,. . ,Xd be a system of parameters. The element u =x~-‘x, is integral 

over the ideal I = (x7,. . . , .a$), but the least degree polynomial which u satisfies showing 

it is integral over I (as in (1)) is n, namely u” -(x7>“-‘(xz) = 0. To see that no smaller 

power is possible, first complete R and go modulo a minimal prime above (xx,. . _,xd). 

We obtain a two-dimensional complete domain. We may then replace this ring by its 

integral closure. It then suffices to see that in a Noetherian integrally closed domain, 

the least degree of a polynomial as in (1) showing the integral dependence of x”-’ y 

over (x’,y”) is exactly n, where x,y are a regular sequence. This easily follows from 

the fact that no monomial in a regular sequence can be in the ideal generated by other 

monomials in the same sequence unless it is formally in the ideal. 

Since our feeling is that the tight closure of I is much tighter to I than the integral 

closure, a natural question which arises is whether there is a bound on the least degree 

of the integral equation of elements in the tight closure of ideals. We conjecture that 

such a bound exists, at least for excellent rings. 

Conjecture 1.5. Let R be an excellent ring containing a field. There exists an integer 

N, depending only on R, such that for all ideals I and x E I*, x satisfies an equation, 

xk + u,xk-1 f.. ‘+ak=O with UicZ’ and k<N. 

Such uniform bound questions played an important role in the proof of the uniform 

Artin-Rees theorem in [8]. The main theorem of this paper will prove Conjecture 1.5 

provided for all minimal primes P, R/P has a resolution of singularities obtained by 

blowing up an ideal. 

A crucial part in the proof is the notion of test elements and what we call a strong 

test ideal. In general, the notion of a test element plays an ubiquitous and important part 

of tight closure theory. The element c in the definition of tight closure can apparently 

vary with I and x. However for many rings, there are elements which can be used in 

all tight closure tests. We call them test elements. 

Definition 1.6. An element c E R” such that cl’ 2 I for all I is called a test element. 

In positive characteristic p, observe that x E I* implies that x4 E (I[q))* for all q = pc. 

It follows that cxq E 1141 for all q if c is a test element and x E I*. 

The existence of such elements plays a crucial role in tight closure theory. The best 

one could hope for is that if c E R” is an element such that every ideal of R, is tightly 

closed, then c has a power which is a test element. Unfortunately, we are not able to 

prove this. We do have the following: 



246 C. Hunekei Journal of Pure and Applied Algebra 122 (1997) 243-250 

Theorem 1.7. Let R be one of the following type of rings: 
(1) A reduced algebra of finite type over an excellent local ring of characteristic 

(2) A”’ reduced ring of characteristic p which is F-finite. 

(3) A reduced ring essentially of finite type over a field of characteristic 0. 

Let c E R0 be such that R, is regular. Then c has a power which is a test 
element for R. 

Proof. In positive characteristic, see [6, (6.20)] for the proof. In equicharacteristic 0, 

see [7]. 

Let us call a ring R acceptable if it satisfies one of the conditions of Theorem 1.7. 

The test ideal is the ideal in R generated by all test elements. We usually denote 

it by r = z(R). For every I, rl* 2 I. One of the main results of this paper will be to 

show the existence of an ideal with even a stronger property. 

Definition 1.8. An ideal J, not contained in any minimal prime of R, is said to be a 

strong test ideal if for every ideal I, JI* = JI. 

A strong test ideal J has a much stronger property that the test ideal r: not only is 

JZ* GZ, but JI* C JZ (and therefore is equal to JZ). Evidently, a strong test ideal is not 

unique. For instance, a multiple of it with an arbitrary ideal not in any minimal prime 

will also be a strong test ideal. On the other hand, there will be a unique largest such 

ideal, since, evidently, the sum of two such ideals as well as the union of a collection 

of such ideals satisfies the same condition. It might be preferable to call this unique 

largest such ideal the strong test ideal, but we have elected not to do so. We will 

prove that a strong test ideal can be chosen whose radical defines the singular locus 

of R, provided for every minimal prime P of R, R/P has a resolution of singularities 

given by blowing up an ideal. 

Theorem 1.9 (Existence of a strong test ideal). If R is an acceptable ring such that 
for every minimal prime P of R, R/P has a resolution of singularities by blowing up 
an ideal, then there exists a strong test ideal J Furthermore, J can be chosen in such 
a way that V(J) defines the singular locus of R. 

Proof. We begin by reducing to the case in which R is a domain. 

Lemma 1.10. Let R be a reduced ring with minimal primes P,, 1 <i<n. Assume that 
there is a nonzero strong test ideal Ji in R/P for all i. Then R has a nonzero strong 

test ideal, I= ci(Pl n...nP_l nP+l n... n P,,)Ii, where I; is Ji lifted back to R. 

Furthermore, tf each Ji defines the locus of nonregular primes in Ri, then I defines 
the locus of nonregular primes in R. 
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Proof. Let K be an ideal in R. Write ( ), to denote images in R/E = Ri. We know 

from Proposition 1.3(2) that (K’); G(Ki)*, SO that by definition Ji(K*)i C JiKi. Lifting 

this equation back to R we find that for all i, 

IiK* C IiK + P;. 

Multiplying by Qi = (9 fY . . . n e-1 n &+I n . . n P,,) yields that QiIiK’ & QiIiK for 

all i. It then follows that IK’ c IK, which proves that I is a strong test ideal. If I 

is contained in any minimal prime Pk, then one obtains that IkQk c Pk, and therefore 

1, c Pk. Since the image of Ik in Rk is nonzero this is a contradiction. 

It remains to prove the last claim. Write &ins for the set of primes P in Spec(S) 

such that Sp is not regular. We need to prove that V(Z) = Rsing if V(Ji) = (Ri),i,g for 

each i. Suppose that I C P. If Rp is regular, then it is a domain. Let Pi C P. Then 

(Pi)), =O, so that Rp g (Ri)p. Then P cannot contain 1i. But P contains (PI n . . n 

4-1 n Pi+1 n . . . n P,)li, and the fact that I: becomes zero after localizing at P implies 

that the annihilator of fi, which is (PI n . . . n P;-l n fl+l n . . . n P,,) is not contained 

in P. This forces Zi G P, and thus Rp is not regular. It follows that V(1) c Rsing. 

Conversely suppose that Rp is not regular, but that Zp P. Then there exists an i 

such that P does not contain (PI n . . . n Pi-1 n Pi+1 n . .. n P,,)Zi. Since P does not 

contain (9 n . . n Pi-1 n Pi+1 n . . . n P,,) it follows that Rp 2 (Ri)p. As P does not 

contain Ii, it holds that (Ri)p is regular. 0 

We now finish the proof of Theorem 1.9. Using Lemma 1 .lO we can assume that 

R is an acceptable domain which has a resolution of singularities by blowing up an 

ideal I. We claim there is a power of I which is a strong test ideal. Note that I will 

define the singular locus of R since its blowup gives a resolution of singularities. Let 

S = R[lt] be the Rees algebra of I, so that X = Proj(S) is a resolution of singularities 

of Spec(R). Let y E I and consider the ring S,,. We see that S,, ” R[Z/y][yt, (yt)-‘1 is 

regular. It follows from Theorem 1.7 that there is a power of yt which is a test element. 

We may do this for each generator y of I, and conclude eventually that some power 

of ZtS consists of test elements for S. Fix this power N. We claim that for all ideals 

J in R, INJ* = INJ. Let J be an ideal of R and let XE J*. Evidently, XE(JS)* and 

so INtNx G JS. But ZNtNx lives in degree N in S, so we must have that INtNx C JSN, 

where SN represents the Nth graded piece of S. Since SN = INtN, the claim follows as 

does the theorem. q 

Example 1.11. One example of a strong test ideal was provided by Janet Cowden [ 11. 

Let (R,m) be a one-dimensional complete local domain, and let C be the conductor 

ideal. In [l] it is noted that C is a strong test ideal. Let I be an arbitrary ideal of 

R. The tight closure of I is simply the integral closure of I. But the integral closure 

of I is IS n R, where S is the integral closure of R. Hence for all ideals I of R, 

CI’ = C(IS n R) C CSI = CZ. It is also easy to see in this case that the conductor is the 

entire test ideal, so that the test ideal is exactly the largest possible strong test ideal. 
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2. Applications 

We begin by showing that Conjecture 1.5 has an affirmative answer when R has a 

strong test ideal. 

Theorem 2.1. Let R be a Noetherian ring such that RJP has a nonzero strong test 
ideal for every minimal prime P of R. Then there exists an integer M with the 

following property: for every ideal I and every x E I*, there is an equation 

n-1 xn+alx +...+a,=0 

with ai E I’ and with n FM. 

Proof. We can first go modulo 

(2) 

the nilradical N; if XEI*, then the image of x in R/N 
is in the tight closure of the image of I in R/N. Suppose we prove Theorem 2.1 for 

R/N with a uniform bound M. Then there will be an equation also in R of degree Mk 

where Nk = 0. Namely, suppose that x” + alx”-’ + . . . + a,, EN with ai ~1’ Raising to 

the kth power gives an equation as in (2) of degree Mk. 

We may assume that R is reduced. Suppose that the minimal primes of R are 

PI,. . . ,Pj and we have shown the theorem in R/e for each 15 is j with uniform 

bounds Mi. Let M = Ml + . . . + Mj, and let x E I*. Write ( )i for images in Ri = R/e. 
We know that xi EZF for each i and then by assumption, there is an equation fi(xi) = 0, 

where deg(J;:)<Mi and fi(X) =X”z + ai+Ynl-l + . . . + a,i with ak E$. Lift the CO- 

efficients of f;: back to R. Call the resulting polynomial fi, and set F = n, <i< j fi. 
The degree of F is at most M, F(x) = 0, and F(X) has the required form (2). 

The case in which R is a domain remains. In this case let J be a nonzero strong test 

ideal and set N equal to the number of generators of J. If x E I*, then Jx C JI and then 

the determinant trick proves that x satisfies an integral equation over I of the form (2) 

of degree N. Specifically, choose generators yi, . . . , yd for J, and write equations 
- 

YiX = >, QjYj 

with aij EI. These equations give rise to a matrix equation. Let 

x - all -a12 

L . 
. . . 

A= : : 
. . . 

-ad1 -ad2 . . 

Then 

It then follows that the determinant of A kills all the yi and hence the determinant 

is 0. Expanding the determinant yields the desired equation. q 
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Corollary 2.2. Let R be an acceptable ring such that R/P has a resolution of singu- 
larities by blowing up an ideal for every minimal prime P of R. Then there exists an 
integer M with the following property: for every ideal I and every XEI*, there is an 

equation 

Yfalx n-l +...+a, =0 

with a, E I’ and with n SM. 

Proof. Simply put together Theorem 2.1 with Theorem 1.9. 0 

Corollary 2.3. Let R be an acceptable ring such that for every minimal prime P of R 
there is a resolution of singularities for R/P obtained by blowing up an ideal. There 

exists an integer M, depending only on R, with the following property: tfI is an ideal 

generated by t elements, and UEI’, then there is an equation of integral dependence 

for u over I of degree at most M. 

Proof. This follows at once from Theorem 1.9 together with the tight closure Briancon- 

Skoda theorem: I’c1*. See [2, (5.4)], for positive characteristic and [5, (6.4)] for 

equicharacteristic 0. 0 

The next corollary is a quick application of the existence of strong test ideals. It 

sounds stronger than it seems to be in practice. Often the ideal Ci( yi, . . . , ji, . . . , y,,): yi 

in Corollary 2.4 will be a maximal ideal. 

Corollary 2.4. Let R be a Noetherian equicharacteristic ring with a strong test ideal 

J=(yl,..., y,). If Ci(yl ,..., jl ,..., yn): yiCZ, then Z*=Z. 

Proof. Let u E I*. For each i, 15 i <n, we know that yiuE JI, so we may write y;u = 

Cj aijyj where aij EI. It follows that u - aii E (~1,. . . , yi-1, yi+l,. . . , yn): yi 2 I. Hence 

UEZ. 0 

3. Questions 

The existence of the strong test ideal raises a number of interesting questions for 

further study. 

Question 3.1. Let R be an excellent local domain containing a field. Does there exist 

a strong test ideal whose radical is equal to the radical of the test ideal? 

Question 3.2. In a similar vein as Question 3.1, does there exist a strong test ideal 

for Cohen-Macaulay tight closure or some variant thereof? For example, let (R,m) be 

an excellent local ring of arbitrary characteristic. Does there exist an ideal J which 
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defines the non-Cohen-Macaulay locus of R such that for every system of parameters 

xl,...,xd, 

J((Xl,...,Xi): Xi+,) =J(XI,...yXi) 

for all O<ild - 1 and 

J((&..., xf): (x1 .xy ) = J(x,,. . . ,Xj) 

for all l<ild? 

Question 3.3. Suppose that J is a strong test ideal. Blowing up J gives us a projective 

scheme over Spec(R) whose affine charts have the property that any element in the 

tight closure of an ideal I from R is in I expanded to the affine piece of the blowup. 

This is hardly surprising since we constructed a strong test ideal from a resolution 

of singularities. Is the blowup of the largest strong test ideal weakly F-regular? (This 

means that all ideals are tightly closed.) This would be interesting, since such schemes 

are then F-rational and hence are pseudo-rational [ 111. Constructing a blowup with only 

pseudo-rational singularities would be an important step in understanding resolution of 

singularities. This means that it would be important to try to construct a strong test 

ideal independent of resolution of singularities. Its blowup might be pseudo-rational. 

Question 3.4. It is reasonable to hypothesize that the largest strong test ideal is tightly 

closed. The construction of a strong test ideal in this paper will normally give a strong 

test ideal which is integrally closed. Perhaps the largest strong test ideal is always 

integrally closed, but it seems more reasonable to ask whether it is tightly closed. 
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